Package: mme 0.1-6
mme: Multinomial Mixed Effects Models
Fit Gaussian Multinomial mixed-effects models for small area estimation: Model 1, with one random effect in each category of the response variable (Lopez-Vizcaino,E. et al., 2013) <doi:10.1177/1471082X13478873>; Model 2, introducing independent time effect; Model 3, introducing correlated time effect. mme calculates direct and parametric bootstrap MSE estimators (Lopez-Vizcaino,E et al., 2014) <doi:10.1111/rssa.12085>.
Authors:
mme_0.1-6.tar.gz
mme_0.1-6.zip(r-4.5)mme_0.1-6.zip(r-4.4)mme_0.1-6.zip(r-4.3)
mme_0.1-6.tgz(r-4.4-any)mme_0.1-6.tgz(r-4.3-any)
mme_0.1-6.tar.gz(r-4.5-noble)mme_0.1-6.tar.gz(r-4.4-noble)
mme_0.1-6.tgz(r-4.4-emscripten)mme_0.1-6.tgz(r-4.3-emscripten)
mme.pdf |mme.html✨
mme/json (API)
# Install 'mme' in R: |
install.packages('mme', repos = c('https://mestherlv.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 6 years agofrom:3acfdec03f. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 13 2024 |
R-4.5-win | OK | Nov 13 2024 |
R-4.5-linux | OK | Nov 13 2024 |
R-4.4-win | OK | Nov 13 2024 |
R-4.4-mac | OK | Nov 13 2024 |
R-4.3-win | OK | Nov 13 2024 |
R-4.3-mac | OK | Nov 13 2024 |
Exports:addtolistaddtomatrixcidata.mmeFbetafFbetaf.ctFbetaf.itinitial.valuesmmedatamodelmodelfit1modelfit2modelfit3msebmsefmsef.ctmsef.itomegaphi.directphi.direct.ctphi.direct.itphi.multphi.mult.ctphi.mult.itprmuprmu.timesPhikfsPhikf.ctsPhikf.itwmatrix